
International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.5, September 2022

DOI: 10.5121/ijsea.2022.13503 23

DOOML: A NEW DATABASE & OBJECT-ORIENTED

MODELING LANGUAGE FOR DATABASE-DRIVEN

WEB APPLICATION DESIGN AND DEVELOPMENT

Thijs Otter

Faculty of Engineering, Design & Computing,

Inholland University of Applied Sciences, Haarlem, The Netherlands

ABSTRACT

A database driven web application is a very common software solution to rising business problems.

Modeling the database and the software architecture can be challenging, hence there not being one

combined modeling language for database and software architecture, specifically suited for web

application development. In this paper we present Database object-oriented Modeling Language (DooML)

and its primary Archetype Diagram: a notation for specifying the design of a database schema and

corresponding object-oriented software architecture. It combines the syntax for drawing Entity

Relationship Diagrams, the Relational Model and Universal Modeling Language Class Diagrams as well

to create a mixed diagram, stating database design as well as software design specifications. By default,

DooML ensures that the approach of advanced web application development is model-driven and both
database-oriented as well as object-oriented.

KEYWORDS

modeling language, object-oriented modeling, database modeling, object-oriented database modeling,

archetype diagram, software modelling.

1. INTRODUCTION

In this paper we present a new modeling language for the database-driven development of object

oriented (web) applications, that combines both the database-oriented as well as the object-

oriented approach of web application development.

The Database Object-Oriented Modeling Language (abbreviated as DooML) is designed to be a

universal back-end software engineering modeling language for the purpose of graphically
defining a combined model for both database design and object-oriented structural code design. It

can be used to design code structures for database-driven web applications that make use of

modern object-oriented programming languages (e.g. Java, C# or PHP) and a relational database

for data storage.

In modern software development, object-oriented software applications can be modeled using

technical diagrams that are part of the UML standard, using class diagrams, sequence diagrams
and state diagrams.

For database design, several diagrams can be used, of which the Entity-Relationship Diagram is a
commonly used approach. Song, Evans & Park [1] stated several notational techniques that exist

https://airccse.org/journal/ijsea/vol13.html
https://doi.org/10.5121/ijsea.2022.13503

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.5, September 2022

24

to model Entity-Relationship Diagrams, where for the purpose of clarity the method of Chen
(1976) is used as inspiration for the development of the DooML modeling language.

DooML combines the syntax for drawing Entity Relationship Diagrams [2], the Relational Model

[3] and Universal Modeling Language Class Diagrams [4] or some versions of SysML [5] as well
to create a mixed diagram, stating database design as well as software design specifications. It

differs from SecureUML [6], as DooML is not emphasizing on creating applications with a focus

on security-driven development. The DooML language as such differs from the combined
concept of Chen and Lu [7], which is primarily focused on manufacturing control systems

(embedded appliances).

The authors have also taken interest into the modeling language called WebML, as described by

Ceri, Fraternali and Bongio [8], that is primarily focused on the navigation within a web

application but does not make use of a components that describe the (relational) data storage.

Figure 1 shows common modeling principles for each of the development areas: application

modeling (e.g. UML), database modeling (using ERD or EER) or API modeling (using

SwaggerHub). A combined database/application/API modeling language should reside in the
center of the Venn-diagram: DooML.

Figure 1. Venn-diagram showing the overlap between database, application and API development and

corresponding modeling techniques

Using a programming language and database independent modeling scheme and syntax, a

technical design for both the (code classes of) the application as well as the underlying database

tabular schema can be created in one combined diagram: the DooML Archetype Diagram. By

creating a combined diagram, one can use one diagram to effectively create both an application
schematic as well as the corresponding database lay-out.

DooML Archetype Diagrams do not qualify as an Object Relational Mapping because it does not
focus primarily on the mapping between (instantiated) objects and database relationships,

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.5, September 2022

25

however DooML Archetype Diagrams can be used as a visual schematic to ensure that objects
are relationally mapped according to ORM diagram standards [9].

DooML can be construed as a Multi-Modeling language , a modeling language that consists and

conforms to a combined set of metamodels, where these metamodels can be divided in
sublanguages [10]. According to Boronat, Knapp, Meseguer and Wirsing, “a useful division of

labor is supported by the multi-modeling language, so that some team members may concentrate

their efforts on building and validating models mostly in a given sublanguage. If the team is well-
coordinated and the multi-modeling language has a good infrastructure, team members working

in different sublanguages will benefit from the efforts of their colleagues working in other

sublanguages.”. This is however not the intent of working with DooML. On the contrary,
mastering a multi-modeling language as an individual, would benefit the consistency of the

(software) project. We envision designers and developers working with a group of architects that

simultaneously use DooML.

As the limits and boundaries are determined of what DooML is limited to and the context it

resides in, the characterics of DooML and the DooML Archetype Diagram will be described.

In the upcoming chapter, the structural model (name stack, field stack and method stack) are

introduced. Chapter 3 (DooML Archetype Diagram: the relational model) discusses the relational

stack, relationships between xObjects/xArchetypes and the referential integrity of such
constructs.

2. DOOML ARCHETYPE: THE STRUCTURAL MODEL

This paragraph describes the structural model and its components, responsible for demonstrating
the code aspects of the modeling language. In the DooML Archetype Diagram, the structural

model is responsible for displaying the properties and methods is called the property stack and

the method stack. The property stack tells the developer which attributes are accessible on the
object level. The method stack tells the developer which methods should be written in order for

the object to function.

2.1. Structural Components of The DooML Archetype Diagram

The DooML Archetype Diagram is represented in a two-dimensional capacity: the first

dimension describes the structural components, hence code. This structure will be addressed in
this paragraph. The second dimension, representing the relational components, will be addressed

in the next chapter (3).

The visual representation of the Archetype xObject as seen in figure 2 bears resemblance to a

UML Class Diagram [4] but is different in a few ways. Firstly, the Field Stack shows properties

or attributes that exists in code (C-) as well as on a table level (D) or on both code and table level
(B). Another option is that the field (or property/attribute) could exist as an API endpoint’s

resource property (A). The letters can be combined to get an accurate description of the

Archetype field or method. An overview of possibilities is given in figure 3.

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.5, September 2022

26

Figure 2. Example of an Archetype xObject showing the several structural components (relational stack

omitted in this figure, refer to 3.1)

Figure 3. Overview of DooML Archetype or DooML Object identifiers before each property/attribute

Another difference with the UML notation is the possibility to show the same identifiers before

each method or function in order to determine whether this method or function exists as a

database function (D) e.g. user-defined functions in Transact-SQL, a code (C) method (for
example a Java method, C# method or PHP function) or both (B). As contemporary software

systems often include an API, DooML offers support for the specification of API endpoints as

well by using the ‘A’ prefix classifier.

2.2. Converting from DooML to Object-Oriented Code (Conversion Rules)

Converting from a DooML Archetype Diagram to object-oriented code adheres to 7 conversion

rules:

1. For each Archetype in the Archetype Diagram, a class definition will be created;

2. All fields of the field stack that have a ‘A’, ‘B’ or ‘C’ prefix identifier will be converted to

properties of a class definition;

3. All methods of the method stack will be converted to methods/functions in a class
definition;

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.5, September 2022

27

4. A field that has the denominator PK (Primary Key) will be considered a unique identifier
(ID) or object identifier;

5. A method described with parentheses after the name declaration will be considered input

(data type) for this method;

6. A method described with a data type after the colon (:), will be considered output (data
type) for this method;

7. A field that has the visiblity denominator (+, -, #) transforms into a public (+), private (-)

or protected (#) identifier for the corresponding class property;

3. DOOML ARCHETYPE DIAGRAM: THE RELATIONAL MODEL

3.1. Relational Components

In 2.1 the structural segment of the DooML Archetype Diagram has been introduced. For purpose

of clarity, this chapter discusses the relational segment of the Archetype. The relational segment
is not limited to relationships in terms of database functionality but also covers the relationships

that classes or objects (when instantiated) can be bound to.

Figure 4 shows the relational dimension of the DooML Archetype Diagram. The relational stack
is an additional part of the diagram that gives the reader information on the constraints from the

point of view of the database. The relational stack contains information about foreign keys,

cardinality and partial or total specialization of the specific keys.

Figure 4. Example of an Archetype xObject showing the several relational components (method and field

stack omitted in this figure, refer to 2.1)

Usually, the Relational stack within the DooML Archetype Diagram is used to describe which

foreign key references which primary key. In figure 4 we see the sample description ‘D+

exampleId bObject.CLIENT.PID ●’, which gives us information about the ‘clientId’ which

references ‘PID’ in the ‘bObject CLIENT’. The ‘●’-symbol indicates that this relationship, or
more specifically the reference key connecting these two Archetypes, can not be empty and needs

to be filled (hence the filled circle symbol), and therefore can not be null (NOT NULL). A open

circle symbol would indicate the possibility that a relationship can be NULL. This would
influence the cardinality of the corresponding relationship between xObject EXAMPLE and

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.5, September 2022

28

bObject CLIENT in this case: the relationship would be TOTAL from the originating
Archetype’s point-of-view. Showing cardinality and totality in a DooML diagram does not differ

much from earlier ERD implementations, as compared by Song, Evans & Park [1, p. 12]. In

DooML relationship types, cardinality can be declared using the letters 1 (one-to), n (many-to in

a binary relationship) or m (many-to in a ternary relationship).

Relationship types between Archetypes in DooML can be drawn with connecting lines between

the Archetypes. Depending on the type of xArchetype, the line has a different drawing style.

3.2. Converting from DooML to a Database Schema (Conversion Rules)

Converting from a DooML Archetype Diagram to object-oriented code adheres to 6 conversion

rules:

1. A many-to-many (n-to-m) relationship between 2 Archetypes will be converted to three

database tables, two for the Archetypes and one for the relationship between these two

Archetypes. In the (third) database table that originates from this relationship, foreign keys
will be included that reference both Archetypes. All attributes/fields of the Archetype will

be transformed to table columns;

2. For a one-to-many (1-to-n) or many-to-one (n-to-1) relationship, this will not be

transformed to a separate database table. The Archetype connected to the 1-side will be
transformed to a database table that contains all relationship fields (attributes) and an

additional foreign key that references the Archetype on the n-side. The Archetype on the n-

side of the relationship does not gain any additional foreign keys, and does not change in
any special manner. All attributes/fields of the Archetype will be transformed to table

columns;

3. For a 1-to-1 relationship, no additional table will created. One of the Archetypes is
converted into a table that contains all attribute types of the relationship and a reference

key to the other Archetype. This reference key in the table has a uniqueness restriction.

The other Archetype remains unchanged;

4. When a table with a reference key fully participates in a relation, the reference key in that
table must be filled in;

5. When a table without a reference key totally participates in a relationship, all key values

must appear at least once as the value of the reference key in the other table;
6. A field that has the denominator PK (Primary Key) will be considered a unique identifier

(ID) or object identifier. Depending on the database query language, this primary field can

be considered UNSIGNED and bearing the AUTOINCREMENT property;

4. DOOML BY EXAMPLE: THE ARCHETYPE DIAGRAM

Fig. 5 shows a simple structure schema for the code and database table structure of a client-

reservation system for a restaurant. The CLIENT can make a RESERVATION. Both CLIENT
and RESERVATION exist as classes in code, as well as tables in the database. This combination

(the existence of both database and code objects) can be modeled as an Archetype Diagram. The

Archetype Diagrams consists of several Archetypes, which in turn can be instantiated as objects

of a certain type. The generic version of this object in DooML is called the xObject (when
instantiated) or xArchetype (when not instantiated). For demonstration purposes, these terms are

interchangeable.

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.5, September 2022

29

Figure 5. Simple DooML Archetype Diagram for a restaurant reservation system

When converting the bothObject (bObject) CLIENT from the DooML diagram as shown in

Figure 4 to a database table (example given in SQL) and to code respectively (example given in

Java), it yields the result shown in figure 5. The Java class Client is a domain model class,
defining the structural components of what information should be kept on the client visiting the

restaurant. The client needs an identifier (clientId) that uniquely identifies each object (class

instance) but also uniquely identifies each row in the client’s database table. The ‘B-’ classifier
prefixes the names of the properties clientId, clientRegistration and clientName where the ‘B’

(Both) within the classifier states that clientId exists as a class property but also as a database

field / column. The ‘-’ (private) within the classifier states that on class level, this variable is not
publicly accessible outside of the class or object scope.

After the name of this Archetype Field, the datatype is shown. This datatype, dependant on the

letter of the prefix classifier (e.g. ‘B’) is the datatype that can be used in the database context
(column data type) as well as in a code context (class property data type). If there is a mismatch

between data types in code versus data types in database, then the code datatype precedes the

database datatype, e.g. B- clientName: string/varchar(500), where string represents the datatype
in code and varchar(500) represents the datatype in the database.

Figure 6. Example of the converted DooML Archetype Diagram to code (Java), SQL DDL (for MySQL)

statement and resulting database table (in MySQL) of Object CLIENT for the restaurant reservation system

When converting the bObject RESERVATION from the DooML diagram as shown in Figure 1
to a database table (example given in SQL) and to code (example given in Java), it yields the

result shown in figure 3. To ensure consistent conversion throughout several deviating use cases,

a formal set of DooML conversion rules has been used for the conversion from Archetype

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.5, September 2022

30

Diagram to the class code and SQL definition statements. The conversion rules can also be found
in paragraph 2.2 and 3.2.

Figure 7. Example of the converted DooML Archetype Diagram to code (Java), SQL DDL (for MySQL)

statement and resulting database table (in MySQL) of Object RESERVATION for the restaurant

reservation system

5. DISCUSSION

When developing a new modeling language, questions arise, e.g. whether DooML is different or
expandable to a certain other modeling language. For corresponding modeling languages one can

argue that DooML is interchangeable when an XML-based specification is used to distribute the

Archetype Diagrams’ main characteristics. When using such an approach, it begs to differ
whether a common denominator can be found to make sure that the original intended design is

transferred into the respective modeling languages’ constructs. Another question rises whether

DooML is sustainable as a modeling language that’s based on current developments in the field.
For example, with the rise of NoSQL applications and non-traditional (non-relational) databases,

further research is demanded on the suitability of DooML for distributed databases. Furthermore,

more complex concepts of referential integrity are withheld from the DooML specification,

therefore the DooML specification is receptive to improvement. Arguably, DooML Archetype
Diagrams focus on the static (structural) design of an archetype. The behavior of the Archetype,

analogue to the interaction between user and machine, is not yet documented. We welcome

others to build upon the structural components and expand the functionality of DooML by not
limiting to only classes and the importance of classes so that object lifecycles and method

lifelines can be implemented. A final comment can be made on the conversion from already

existing applications to DooML, whether those are databases, application programming interfaces

or actual codes (so called reverse-engineering design generation).

6. CONCLUSIONS

DooML can be used to create stable and combined database and object-oriented software
engineering diagrams. The benefit of using DooML is that one can model both the structure as

well as the data storage layer of an application. The downside of using DooML is the lack of

functionality to preserve referential integrity from a database perspective. Also, while DooML

can be seemingly effective for large-scale software systems, for small-scale software applications
the modeling phase can be a hassle to the software architect because of unnecessary overhead.

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.5, September 2022

31

ACKNOWLEDGEMENTS

The author would like to thank all contributors, critical friends and colleagues.

REFERENCES

[1] I. Y. Song, M. Evans and E. Park, „ A comparative analysis of entity-relationship diagrams. ,,”

Journal of Computer and Software Engineering, 3(4), pp. 427-459, 1995.

[2] P. P. S. Chen, „The entity-relationship model—toward a unified view of data,” ACM Transactions on
Database Systems (TODS), 1(1), pp. 9-36., 1976.

[3] E. F. Codd, „Extending the database relational model to capture more meaning,” ACM Transactions

on Database Systems (TODS) 4(4), pp. 397-434., 1979.

[4] G. Booch, J. Rumbaugh and I. Jacobson, The unified modeling language reference manual (Vol 2.),

Reading: Addison-Wesley, 1999.

[5] S. Friedenthal, A. Moore and R. Steiner, A practical guide to SysML: the systems modeling

language., Morgan Kaufmann., 2014.

[6] T. Lodderstedt, D. Basin and J. Doser, „SecureUML: A UML-based modeling language for model-

driven security.,” in International Conference on the Unified Modeling Language , Berlin,

Heidelberg, 2002, September.

[7] K. Y. Chen and S. S. Lu, „A Petri-net and entity-relationship diagram based object-oriented design
method for manufacturing systems control.,” International Journal of Computer Integrated

Manufacturing, 10(1-4), pp. 17-28, 1997.

[8] S. Ceri, P. Fraternali and A. Bongio, „Web Modeling Language (WebML): a modeling language for

designing Web sites,” Computer Networks 33(1-6), pp. 137-157., 2000.

[9] T. Halpin and A. Bloesch, „Data modeling in UML and ORM: a comparison,” in Journal of Database

Management, vol. 10, no. 4, Hersey, PA, USA, Idea Group Publishing, 1999, pp. 4-13.

[10] A. Boronat, A. Knapp, J. Meseguer and M. Wirsing, „What Is a Multi-modeling Language?,” in

WADT 2008, LNCS 5486, Berlin Heidelberg, 2009.

[11] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler and F. Yergeau, „Extensible markup language

(XML),” World Wide Web Journal, 2(4), pp. 27-66, 1997.

AUTHORS

Thijs Otter works at the Inholland University of Applied Sciences (Haarlem, The

Netherlands) in the Faculty of Engineering, Design and Computing as a Lecturer in the

Information Technology curriculum. He focuses on teaching (object-oriented)

programming, software modeling with UML and database modeling with EER (Extended

Entity Relationship) modeling.

	Abstract
	A database driven web application is a very common software solution to rising business problems. Modeling the database and the software architecture can be challenging, hence there not being one combined modeling language for database and software ar...
	Keywords

